一般而言,多路的服务器运行的都是比较关键的数据库系统,数据库包含两个知名的测试规范组织的基准测试:ANSI(American National Standards Institute,美国国家标准局)和TPC(Transaction Processing Performance Council,事务处理性能委员会)。其中,ANSI的AS3AP(ANSI SQL Standard Scalable and Portable)Benchmark是一个可扩展、可移植的简单关系数据库基准测试,而TPC的测试方案大家都很熟悉,就是TPC-C、TPC-E、TPC-H和TPC-W等一系列数据库基准测试方案。
我们选择的是AS3AP测试方案,AS3AP测试分为单用户测试和多用户测试两大部分。AS3AP数据库包含5个关系表,其中一个表一行一列,用来记录测试开支。其它四个表有着同样的结构(属性名、属性类型),通过生成文件装入的数据生成,它们的区分表现在某一列上有不同值的行数。每行记录的长度大约是100字节。
为了运行AS3AP性能测试,我们在服务器上安装了Windows Server 2012 R2 Datacenter、Microsoft SQL Server 2012 Enterprise 64bit,并搭建了100台客户端,每台客户端上安装了Windows Server 2012 R2 Datacenter和Microsoft的ODBC Driver,通过Benchmark Factory软件执行了AS3AP性能测试,测试的负载是500个用户。尽管数据库测试的网络流量并不如文件服务器的那么高,但数据库对延迟是有追求的,千兆网卡在交易频率上无法满足测试,不过,富士通随机附带了一块Intel X520-2双端口万兆网卡(光纤口),我们搭配了Intel的PRO Set 19.5驱动进行了测试,测试中,我们打开了中断调制、9KB巨帧,并配置为16个RSS队列。
好文章,需要你的鼓励
伊斯法罕大学研究团队通过分析Google Play商店21款AI教育应用的用户评论,发现作业辅导类应用获得超80%正面评价,而语言学习和管理系统类应用表现较差。用户赞赏AI工具的快速响应和个性化指导,但抱怨收费过高、准确性不稳定等问题。研究建议开发者关注自适应个性化,政策制定者建立相关规范,未来发展方向为混合AI-人类模型。
谷歌发布基于Gemini 3的快速低成本模型Flash,并将其设为Gemini应用和AI搜索的默认模型。新模型在多项基准测试中表现优异,在MMMU-Pro多模态推理测试中得分81.2%超越所有竞品。该模型已向全球用户开放,并通过Vertex AI和API向企业及开发者提供服务。定价为每百万输入token 0.5美元,输出token 3美元,速度比2.5 Pro快三倍且更节省token用量。
这项由伊利诺伊大学香槟分校等四所院校联合完成的研究,提出了名为DaSH的层次化数据选择方法。该方法突破了传统数据选择只关注单个样本的局限,通过建模数据的天然层次结构,实现了更智能高效的数据集选择。在两个公开基准测试中,DaSH相比现有方法提升了高达26.2%的准确率,同时大幅减少了所需的探索步数。